Tests of the Uplifted Higgs region

Bogdan Dobrescu (Fermilab) work with Paddy Fox

Talk at the Muon Collider Workshop Fermilab, November 2009

Electroweak symmetry breaking

We know that $SU(2)_W imes U(1)_Y o U(1)_Q$

 $\Rightarrow W^{\pm}$ and Z have not only transverse polarizations,

but also longitudinal ones: three spin-0 states have been eaten.

(Higgs mechanism)

What is the origin of electroweak symmetry breaking?

Electroweak symmetry breaking

We know that $SU(2)_W imes U(1)_Y o U(1)_Q$

 $\Rightarrow W^{\pm}$ and Z have not only transverse polarizations,

but also longitudinal ones: three spin-0 states have been eaten.

(Higgs mechanism)

What is the origin of electroweak symmetry breaking?

We do not know:

- ullet why is there a VEV that breaks SU(2) imes U(1) ?
- what are the properties of the field that has a VEV?
- what unitarizes $W_L^+W_L^-$ scattering?

Minimal Supersymmetric Standard Model

Superpotential: $W=y_u\,\hat{u}^c\hat{H}_u\hat{Q}-y_d\,\hat{d}^c\hat{H}_d\hat{Q}-y_\ell\,\hat{e}^c\hat{H}_d\hat{L}+\mu\,\hat{H}_u\hat{H}_d$

We assign R-charges such that the soft susy-breaking term $B\mu H_u H_d$ is forbidden, e.g., $R[\hat{H}_d,\hat{Q},\hat{u}^c,\hat{e}^c]=0$ and $R[\hat{H}_u,\hat{d}^c,\hat{L}]=2$.

Higgs potential:

$$\left(|\mu|^2+m_{H_u}^2
ight)|H_u|^2+\left(|\mu|^2+m_{H_d}^2
ight)|H_d|^2+rac{1}{8}\left(g^2+g'^2
ight)\left(|H_u|^2-|H_d|^2
ight)^2$$

 $m_{H_u}^2$ and $m_{H_d}^2$ are susy-breaking parameters.

We impose that

$$|\mu|^2 + m_{H_d}^2 < 0$$
$$|\mu|^2 + m_{H_d}^2 > 0$$

and, in order for the potential to be bounded from below, that

$$2|\mu|^2 + m_{H_u}^2 + m_{H_d}^2 > 0$$
 .

 \Rightarrow only H_u acquires a VEV.

 H_d has no VEV \Rightarrow down-type quarks and leptons do not acquire masses from the Yukawa couplings given in the superpotential.

Should one dismiss this region of parameter space?

No: the Yukawa couplings explicitly break the chiral symmetries from $U(3)^5$ to $U(1)_B imes U(1)_L$

 \Rightarrow loops will generate masses for the down-type quarks and leptons.

Holomorphy dictates that the supersymmetric Higgs sector is a Two-Higgs-Doublet model of type-II

(only up-type quarks get masses from H_u).

However, once supersymmetry (and the R-symmetry) is broken, all gauge invariant operators may be present in the low-energy effective Lagrangian. These include:

$$-y_d' d^c H_u^{\dagger} Q - y_\ell' e^c H_u^{\dagger} L$$

The F term for H_d which follows from the superpotential is

$$F_{H_d}^\dagger = y_d\, ilde{d}^c \widetilde{Q} + y_\ell\, ilde{e}^c \widetilde{L} - \mu H_u$$
 .

This F term generates the following trilinear scalar interactions in the Lagrangian:

$$\mu^* H_u^\dagger \left(y_d ilde{d}^c \widetilde{Q} + y_\ell ilde{e}^c \widetilde{L}
ight) + ext{H.c.}$$

Loop-induced lepton masses

These 1-loop diagrams are finite, and give rise to an uplifted-Higgs lepton coupling:

$$\begin{split} y_\ell' &= \frac{y_\ell \, \alpha}{8\pi} e^{i(\theta_W - \theta_\mu)} \bigg\{ \frac{3}{s_W^2} F\bigg(\!\frac{M_{\tilde{W}}}{M_{\tilde{L}}}, \frac{|\mu|}{M_{\tilde{L}}}\!\bigg) + \frac{e^{i(\theta_B - \theta_W)}}{c_W^2} \bigg[- F\bigg(\!\frac{M_{\tilde{B}}}{M_{\tilde{L}}}, \frac{|\mu|}{M_{\tilde{L}}}\!\bigg) \\ &+ 2F\bigg(\!\frac{M_{\tilde{B}}}{M_{\tilde{e}}}, \frac{|\mu|}{M_{\tilde{e}}}\!\bigg) - \frac{2|\mu|}{M_{\tilde{e}}} F\bigg(\!\frac{M_{\tilde{B}}}{M_{\tilde{L}}}, \frac{M_{\tilde{e}}}{M_{\tilde{L}}}\!\bigg) \bigg] \bigg\} \end{split}$$

$$F(x,y) = rac{2xy}{x^2 - y^2} \left(rac{y^2 \ln y}{1 - y^2} - rac{x^2 \ln x}{1 - x^2}
ight)$$

Contributions to the y'_d Yukawa coupling of the down-type quarks:

The F-term interaction for quarks given in appears in a loop that involves either a bino (as in the case of leptons) or a gluino.

$$(y_d')_F = rac{y_d}{3\pi}e^{i(heta_g- heta_\mu)}rac{2|\mu|}{M_{ ilde{d}}}\left[lpha_sFigg(rac{M_{ ilde{g}}}{M_{ ilde{Q}}},rac{M_{ ilde{d}}}{M_{ ilde{Q}}}igg) + rac{lpha e^{i(heta_B- heta_g)}}{24c_W^2}Figg(rac{M_{ ilde{B}}}{M_{ ilde{Q}}},rac{M_{ ilde{d}}}{M_{ ilde{Q}}}igg)
ight]$$

The Higgs boson h^0 that couples to WW is at tree level entirely part of the H_u doublet

The other physical states, H^0 , A^0 and H^\pm , are all part of the H_d doublet and have the same tree-level mass:

$$M_{H^0}^2 = M_{A^0}^2 = M_{H^\pm}^2 = |\mu|^2 + m_{H_d}^2$$

This may range between several hundred GeV to a few TeV.

The heavy "Higgs" bosons (H^0,A^0,H^\pm) have a large Yukawa coupling to the au, such that the branching fractions for $H^0,A^0\to au^+ au^-$ and $H^\pm\to au^\pm
u$ may be as large as 90%.

The Yukawa coupling of H^0 and A^0 to $\mu^+\mu^-$ is

$$y_{\mu}pprox y_{ au}rac{m_{\mu}}{m_{ au}}\gtrsim 0.07$$

s-channel production of H^0 and A^0 at a muon collider would allow detailed studies of the heavy Higgs bosons.

Relatively broad resonances, because $y_{ au} \gtrsim 1.5$:

$$\Gamma(H^0)pprox\Gamma(H^0)pproxrac{y_ au^2+3y_b^2}{16\pi}M_{H^0}$$

Natural spread in the muon collider beam energy is smaller than $\Gamma(H^0)$.

$$egin{aligned} \sigma(\mu^+\mu^- o H^0, A^0 o au^+ au^-) &pprox rac{8\pi}{M_{H^0}^2} B(H^0 o \mu^+\mu^-) B(H^0 o au^+ au^-) \ B(H^0 o au^+ au^-) &pprox rac{y_ au^2}{y_ au^2 + 3y_b^2} pprox 30 - 90\% \ B(H^0 o \mu^+\mu^-) &pprox rac{m_\mu^2}{m_ au^2} B(H^0 o au^+ au^-) \end{aligned}$$

Resonably large cross section:

$$\sigma(\mu^+\mu^- \to H^0, A^0 \to au^+ au^-) pprox 17 ext{ pb } \left(rac{1 ext{ TeV}}{M_{H^0}} imes rac{B(H^0 \to au^+ au^-)}{0.7}
ight)^2$$

Conclusions

Explorations of the energy frontier require a muon collider. In particular, a muon collider would be crucial for understanding the origin of electroweak symmetry breaking.

The Minimal Supersymmetric Standard Model has been hiding (for over 30 years) a large region of parameter space with surprising phenomenological implications.

In this "Uplifted region" of the MSSM Higgs sector all fermion masses are generated predominantly by their couplings to H_u . $\tan \beta \approx 300$ is a confusing parameter.

The Yukawa coupling of H^0 and A^0 to $\mu^+\mu^-$ is 0.1 or larger. s-channel production of H^0 and A^0 at a muon collider would be the best way of studying this supersymmetric Higgs sector.